Electrohydrodynamic Nanofluid Hydrothermal Treatment in an Enclosure with Sinusoidal Upper Wall

نویسندگان

  • Mohsen Sheikholeslami
  • Rahmat Ellahi
  • Takayoshi Kobayashi
چکیده

The influence of non-uniform electric filed on Fe3O4-Ethylene glycol nanofluid hydrothermal treatment in an enclosure with sinusoidal upper and moving lower walls is investigated in this study. Control Volume based Finite Element Method (CVFEM) is utilized to simulate in the presented model. Numerical investigation are conducted for the sundry parameters such as Reynolds number; nanoparticle volume fraction and supplied. Results show that supplied voltage can change the flow shape. Coulomb force causes isotherms denser near the moving wall. Heat transfer rises with augment of supplied voltage and Reynolds number. Effect of electric filed on heat transfer is more pronounced at low Reynolds number. Finally, a comparison with the existing literature is also made.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of flow and heat transfer of nanofluid in a diverging sinusoidal channel

Using of nanofluids and ducts with corrugated walls are both supposed to enhance heat transfer, by increasing the heat transfer fluid conductivity and the heat transfer area respectively. Use of a diverging duct with a jet at inlet section may further increase heat transfer by creating recirculation zones inside the duct. In this work two-dimensional incompressible laminar flow of a nanofluid e...

متن کامل

Lattice Boltzmann method for MHD natural convection of CuO/water nanofluid in a wavy-walled cavity with sinusoidal temperature distribution

In this paper, natural convection heat transfer of CuO-water Nanofluid within a wavy-walled cavity and subjected to a uniform magnetic field is examined by adopting the lattice Boltzmann model. The left wavy wall is heated sinusoidal, while the right flat wall is maintained at the constant temperature of Tc. The top and the bottom horizontal walls are smooth and insulated against heat and mass....

متن کامل

Transient Natural Convection in an Enclosure with Variable Thermal Expansion Coefficient and Nanofluid Properties

Transient natural convection is numerically investigated in an enclosure using variable thermal conductivity, viscosity, and the thermal expansion coefficient of Al2O3-water nanofluid. The study has been conducted for a wide range of Rayleigh numbers (103≤ Ra ≤ 106), concentrations of nanoparticles (0% ≤ ϕ ≤ 7%), the enclosure aspect ratio (AR =1), and temperature differences between the cold a...

متن کامل

Investigation of flow and heat transfer of nanofluid in a diverging sinusoidal channel

Using of nanofluids and ducts with corrugated walls are both supposed to enhance heat transfer, by increasing the heat transfer fluid conductivity and the heat transfer area respectively. Use of a diverging duct with a jet at inlet section may further increase heat transfer by creating recirculation zones inside the duct. In this work two-dimensional incompressible laminar flow of a nanofluid e...

متن کامل

Influence of Magnetic Wire Positions on free convection of Fe3O4-Water nanofluid in a Square Enclosure Utilizing with MAC Algorithm

The augment of heat transfer and fluid of buoyancy-driven flow of Fe3O4-Water nanofluid in a square cavity under the influence of an external magnetic field is studied numerically. Cold temperature is applied on the side (vertical) walls and high temperature is imposed on the bottom wall while the top wall is kept at thermally insulated. The governing non-dimensional differential equations are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015